6.1Energy and Metabolism

Cells perform the functions of life through various chemical reactions. A cell’s metabolism refers to the chemical reactions that take place within it. There are metabolic reactions that involve the breaking down of complex chemicals into simpler ones, such as the breakdown of large macromolecules. This process is referred to as catabolism, and such reactions are associated with a release of energy. On the other end of the spectrum, anabolism refers to metabolic processes that build complex molecules out of simpler ones, such as the synthesis of macromolecules. Anabolic processes require energy. Glucose synthesis and glucose breakdown are examples of anabolic and catabolic pathways, respectively.

6.2Potential, Kinetic, Free, and Activation Energy

Energy comes in many different forms. Objects in motion do physical work, and kinetic energy is the energy of objects in motion. Objects that are not in motion may have the potential to do work, and thus, have potential energy. Molecules also have potential energy because the breaking of molecular bonds has the potential to release energy. Living cells depend on the harvesting of potential energy from molecular bonds to perform work. Free energy is a measure of energy that is available to do work. The free energy of a system changes during energy transfers such as chemical reactions, and this change is referred to as ∆G.

The ∆G of a reaction can be negative or positive, meaning that the reaction releases energy or consumes energy, respectively. A reaction with a negative ∆G that gives off energy is called an exergonic reaction. One with a positive ∆G that requires energy input is called an endergonic reaction. Exergonic reactions are said to be spontaneous, because their products have less energy than their reactants. The products of endergonic reactions have a higher energy state than the reactants, and so these are nonspontaneous reactions. However, all reactions (including spontaneous –∆G reactions) require an initial input of energy in order to reach the transition state, at which they’ll proceed. This initial input of energy is called the activation energy.

6.3The Laws of Thermodynamics

In studying energy, scientists use the term “system” to refer to the matter and its environment involved in energy transfers. Everything outside of the system is called the surroundings. Single cells are biological systems. Systems can be thought of as having a certain amount of order. It takes energy to make a system more ordered. The more ordered a system is, the lower its entropy. Entropy is a measure of the disorder of a system. As a system becomes more disordered, the lower its energy and the higher its entropy become.

A series of laws, called the laws of thermodynamics, describe the properties and processes of energy transfer. The first law states that the total amount of energy in the universe is constant. This means that energy can’t be created or destroyed, only transferred or transformed. The second law of thermodynamics states that every energy transfer involves some loss of energy in an unusable form, such as heat energy, resulting in a more disordered system. In other words, no energy transfer is completely efficient and tends toward disorder.

6.4ATP: Adenosine Triphosphate

ATP is the primary energy-supplying molecule for living cells. ATP is made up of a nucleotide, a five-carbon sugar, and three phosphate groups. The bonds that connect the phosphates (phosphoanhydride bonds) have high-energy content. The energy released from the hydrolysis of ATP into ADP + Pi is used to perform cellular work. Cells use ATP to perform work by coupling the exergonic reaction of ATP hydrolysis with endergonic reactions. ATP donates its phosphate group to another molecule via a process known as phosphorylation. The phosphorylated molecule is at a higher-energy state and is less stable than its unphosphorylated form, and this added energy from the addition of the phosphate allows the molecule to undergo its endergonic reaction.

6.5Enzymes

Enzymes are chemical catalysts that accelerate chemical reactions at physiological temperatures by lowering their activation energy. Enzymes are usually proteins consisting of one or more polypeptide chains. Enzymes have an active site that provides a unique chemical environment, made up of certain amino acid R groups (residues). This unique environment is perfectly suited to convert particular chemical reactants for that enzyme, called substrates, into unstable intermediates called transition states. Enzymes and substrates are thought to bind with an induced fit, which means that enzymes undergo slight conformational adjustments upon substrate contact, leading to full, optimal binding. Enzymes bind to substrates and catalyze reactions in four different ways: bringing substrates together in an optimal orientation, compromising the bond structures of substrates so that bonds can be more easily broken, providing optimal environmental conditions for a reaction to occur, or participating directly in their chemical reaction by forming transient covalent bonds with the substrates.

Enzyme action must be regulated so that in a given cell at a given time, the desired reactions are being catalyzed and the undesired reactions are not. Enzymes are regulated by cellular conditions, such as temperature and pH. They are also regulated through their location within a cell, sometimes being compartmentalized so that they can only catalyze reactions under certain circumstances. Inhibition and activation of enzymes via other molecules are other important ways that enzymes are regulated. Inhibitors can act competitively, noncompetitively, or allosterically; noncompetitive inhibitors are usually allosteric. Activators can also enhance the function of enzymes allosterically. The most common method by which cells regulate the enzymes in metabolic pathways is through feedback inhibition. During feedback inhibition, the products of a metabolic pathway serve as inhibitors (usually allosteric) of one or more of the enzymes (usually the first committed enzyme of the pathway) involved in the pathway that produces them.